\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (Civil Engg. : CBCS) IV-Semester Main Examinations, January-2021 Fluid Mechanics

Time: $\mathbf{2}$ hours
Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A (9 $\times 2=18 \mathrm{Marks}$)

Q. No.	Stem of the question	M	L	CO	PO
1.	Compare absolute pressure atmospheric and gauge pressure with a diagram.	2	2	1	1
2.	Define buoyancy and center of buoyancy.	2	1	1	1
3.	Explain the concept of stream line with a sketch.	2	2	2	1
4.	List the various uses and limitations of flow net	2	1	2	1
5.	Discuss the various limitations of Bernoulli's equation.	2	6	3	2
6.	Determine the discharge through rectangular notch when head over notch is 20 cm , length of notch as 25 cm with coefficient of discharge of 0.63 .	2	5	3	2
7.	Distinguish between TEL and HGL with a sketch.	2	4	4	2
8.	List various minor losses in pipe flow.	2	3	4	1
9.	Distinguish between geometric and kinematic similarity and give examples for each.	2	4	5	4
10.	Compare distorted and undistorted models.	2	2	5	4
11.	Find the relation between compressibility of water and compressibility of air	2	1	1	1
12.	Compare local acceleration and convective acceleration.	2	2	2	1
	Part-B ($3 \times 14=42 \mathrm{Marks}$)				
13. a)	Show that the equation for total pressure is $\mathbf{P}=\mathbf{w}^{*} \mathbf{A}^{*} \mathbf{y}$ when an inclined plane surface is immersed in a static fluid of specific weight ' w ', where A is area of plane surface and y is centre of gravity distance of plane surface from free liquid surface.	8	1	1	2
b)	Evaluate the value of dynamic viscosity in N -sec $/ \mathrm{m}^{2}$ when density of fluid flowing is $0.8 \mathrm{gm} / \mathrm{cm}^{3}$ and Kinematic viscosity of flowing fluid is 3×10 ${ }^{-4}$ stokes.	6	5	1	2
14. a)	Define (i) Stream line (ii) Streak line (ii) Path line (iv) Stream tube	8	1	2	1
b)	Outline the characteristics of stream function (Ψ) and velocity potential function (ϕ).	6	2	2	1

15. a) Identify the significance and limitations of Bernoulli's equation?
b) Evaluate the coefficient of discharge through horizontal Venturi meter of inlet diameter 300 mm and throat diameter 150 mm . The discharge of water flowing through it is 65 Litres $/ \mathrm{sec}$. A differential gauge is connected to it shows a deflection of fluid of specific gravity 1.6.
16. a) Develop Darcy-Weisbach equation with basic principles by writing assumptions.
b) Compare pipes in series and pipes in parallel with neat sketches.
17. a) Develop a relation between torque T which is needed to rotate a disc of diameter D at an angular velocity of ω in a fluid with density ρ and viscosity μ of the disc is at a distance h from a fixed wall. Use Buckingham- Π Theorem.
b) Explain similarity laws. List the significance of Reynolds's and Froude number.
18. a) Define capillarity and derive the equation of capillary rise when a glass tube is immersed in a static fluid.
b) Explain the various classifications of fluid flow with examples.
19. Answer any two of the following:
a) Discuss Impulse momentum equation with derivation and write its applications
b) Define water hammer and explain the difference between gradual closure and sudden closure of valve.
c) Explain the dimensional Homogeneity and show its application with three examples

8	1	3	2
6	5	3	2
8	3	4	2
6	4	4	2
6	3	5	2
8	4	5	2
8	1	1	1
6	2	2	1
7	6	3	1
7	1	4	2
7	2	5	2
7			

M: Marks;
L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	50
2	Knowledge on application and analysis (Level-3 \& 4)	40
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	10

